Perfluoro- and Polyfluoroazaalkenes as Precursors to Bis(perfluoroalkyl or polyfluoroalkyl) Alkyl (or Aryl) Tertiary Amines

Yihong Chen, Nimesh R. Patel, Robert L. Kirchmeier, and Jean'ne M. Shreeve'

Department of Chemistry, University of Idaho, Moscow, Idaho **83843**

Received July *20, 1992*

Upon thermolysis the olefins $CF_2=CFX$ (X = Cl, F) readily insert into one of the nitrogen chlorine bonds of $C_3F_7NC1_2$ to form $C_3F_7N(Cl)CF_2CFC1_2$ (1) and $C_3F_7N(Cl)CF_2CF_2Cl$ (2). Photolysis of both 1 and 2 at 3000 Å gives the perfluoroazaalkene $C_3F_7N=CF_2$ with concomitant loss of CFXCl₂. With either $(C_6H_5)_3P$ or CsCl, 1 and **2** give the more highly substituted azaalkenes $C_2F_5CF=NCF_2CFCI_2$ and $C_2F_5CF=NCF_2CF_2CI$, respectively. Cyanogen chloride readily inserts into the N-Cl bond of 1 to form a reactive carbimide, $C_3F_7(N=CCI_2)CF_7CFCI_2$. Azaalkenes in the presence of AgF in CH₃CN or C₆H₃CN can be reacted with a variety of alkyl iodides, phenyl iodide, and di- and tetrabromoethanes to give bis(perfluoroalky1) alkyl (or aryl) tertiary amines and highly substituted ethanes; e.g., for $R_fN(R)CF_3$, when $R_f = CF_3$, C_2F_5 , and C_3F_7 , $R = CH_3$, C_2H_5 , C_6H_5 , (CH_3) ₃Si, CF_3S ; CH_3 , C_2H_5 ; CH₃; and CH₃, respectively. With CF₃N=CF₂ and AgF, BrCH₂CH₂Br and Br₂CHCHBr₂ give (CF₃)₂NCH₂- $CH₂N(CF₃)₂$ and $[(CF₃)₂N]₂CHCH[N(CF₃)₂]₂$, respectively. Methyl iodide with $(CF₃)₂NN=CFN(CF₃)N(CF₃)₂$ and $SF₅N=CC(Cl)C₂F₅$ in the presence of AgF form $(CF₃)₂NN(CH₃)CF₂N(CF₃)₂$ and $SF₅N(CH₃)CF₂$ CF₂CF₃. Unexpectedly, C₃F₇N= CF_2 with CF₃CH₂I and AgF at 100 °C results in C₂F₅CF=NCH₂CF₃. These mixed bis(perfluoroalky1) alkyl(or aryl) tertiary amines are stable materials whose thermodynamic and physical properties suggest possible real world applications.

Introduction

Studies of the chemistry of the nitrogen-halogen bond continue to provide a variety of new routes to a range of compounds of varying properties. These materials in turn are viable precursors to mixed perfluoroalkyl alkyl(or aryl) tertiary amines which exhibit attractive thermal stabilities and vapor pressures.

Insertion of olefins $CF_2=CFX$ (X = Cl, F) into the nitrogenchlorine bonds of dichloro(perfluoroalkyl)amines, R_fNCl₂, occurs readily, providing a high-yield, straightforward route to secondary (polyfluoroalkyl or **perfluoroalky1)chloroamines** and tertiary (polyfluoroalkyl or perfluoroalkyl)amines. At $65-70$ °C, insertion into only one of the nitrogen-chlorine bonds occurs to give RfN(CF2CFXCl)CI, while, at **90-100** 6C, insertion into both nitrogen-chlorine bonds produces the tertiary amines $R_fN(CF_2)$ - $CFXC1$ ₂ in good yields.¹⁻³ Olefins insert with equal ease into the N-X bond of $CF_2=NX$ (X = Cl, Br).^{4,5}

Advantage has been taken of the ready thermal or photolytic activation of the N-Cl bond, particularly in the secondary chloroamines, to insert nitriles to form carbimides in high yields, viz.

$$
R_f(CF_3)NCI + RC = N \stackrel{h\nu}{\rightarrow} R_f(CF_3)NN = CCIR^{6-9}
$$

R = Cl, CF₃; R_f = CF₃, CF₃CF₂, CC₂FCF₂, CCIF₂CF₂

The polar nature of the $-N=C<$ bonds allows the addition of chlorine fluoride at 25 °C to form new chloroamines which are precursors under photolytic conditions to a thermally stable family

- **(1)** Sarwar, G.; Kirchmeier, R. L.; Shreeve, J. M. *Inorg. Chem.* **1989, 28, 2187** and references therein.
- *(2)* Sarwar, **G.;** Kirchmeier, R. L.; Shreeve, J. M. *Heteroatom Chem.* **1990,** I, **167.**
- **(3)** Zheng, Y. Y.; Patel, N. **R.;** Kirchmeier, R. L.; Shreeve, J. M. *Inorg.* **(4)** Bauknight,C. **W.,** Jr.;DesMarteau, D. D. J. *Org. Chem.* **1988,53,4443.** *Chem.* **1992. 31,488.**
-
- **(5)** Zheng, **Y.** Y.; DesMarteau, D. D. *J. Org. Chem.* **1983,** *48,* **4844. (6)** Dobbie, R. **C.;** Emelbus, H. J. *J. Chem. SOC.* **1964, A933.**
- **(7)** Sarwar, **G.;** Kirchmeier, R. L.; Shreeve, J. M. *Inorg. Chem.* **1989,28,**
- (8) Sarwar, G.; Kirchmeier, R. L.; Shreeve, J. M. *Inorg. Chem.* **1990, 29, 3345** and references therein.
- **(9)** Patel, N. R.; Kirchmeier, R. L.; Shreeve, J. M. *J. Fluorine Chem.* **1990, 4255** and references therein. *40,* **395** and references therein.

of tetrazanes, 7 e.g.

$$
R_f(CF_3)NN = CCIR + CIF \rightarrow R_f(CF_3)NN(CI)CCIFR
$$

$$
R_f(CF_3)NN(CI)CCIFR \xrightarrow{h\nu} [R_f(CF_3)NNCCIFR]_2
$$

Interestingly, when certain secondary bis(perfluoro- or poly**fluoroalky1)chloroamines** are photolyzed neat, rather than dimerizing to form hydrazines and chlorine, essentially quantitative

yields of perfluoroazaalkenes and chlorofluorocarbons result.^{1,10}
R_fN(CF₂CFXCI)Cl
$$
\stackrel{h\nu}{\rightarrow}
$$
 R_fN=CF₂ + CFXCI₂

Dechlorofluorination of certain secondary chloroamines with

triphenylphosphine also gives rise to azaalkenes.¹⁰
\nCF₃N(CF₂CFXCI)Cl + (C₆H₅)₃P
$$
\rightarrow
$$

\nCF₃N=CFCFXCI + (C₆H₅)₃PCIF

In the work described here, we have extended the reaction chemistry of $C_3F_7NCl_2$. Additionally, we report the utilization of the silver derivatives of azaalkenes as intermediates in the formation of a variety of perfluoroalkyl alkyl (or aryl) tertiary amines.

Results and Discussion

A large number of **N-chloro(perfluoroalkyl)(polyfluoroalkyl)** amines can be photolytically induced to lose chlorofluorocarbons to form perfluoroazaalkenes, $R_fN=CF_2$.^{1-3,8} The parent chloroamines are readily obtained via the saturation of the carbonnitrogen triple bond in perfluoroalkane nitriles with chlorine fluoride, followed by insertion of a variety of perfluoro- and polyfluoroolefins into one of the resulting nitrogen-chlorine bonds. For example, new in this report are the olefin insertion reactions with $C_3F_7NCl_2$:

⁽IO) Sarwar, G.; Kirchmeier, R. **L.;** Shreeve, J. M. *Inorg. Chem.* **1990,** *29,* **571** and references therein.

$$
C_2F_5CN + CIF \stackrel{-78 \text{°C}}{\rightarrow} C_3F_7NCI_2
$$

$$
C_{3}F_{7}NCl_{2} + CF_{2} = CFCl \stackrel{\Delta}{\rightarrow} C_{3}F_{7}N(Cl)CF_{2}CFCl_{2}
$$

1 (75%)

$$
C_{3}F_{7}NCl_{2} + CF_{2} = CF_{2} \stackrel{\Delta}{\rightarrow} C_{3}F_{7}N(Cl)CF_{2}CF_{2}Cl
$$

2 (40%)

Thesechloroamines are purified via trap-to-trap distillation. Only a single isomer of **1** is obtained in a yield nearly twice that of the insertion compound **2.** Given the bulky nature of the radical C_3F_7NCl , it is not surprising that the predominant intermediate in the reaction with $CF_2=CCIF$ is formed by attack at the carbon bonded to two fluorine atoms

$$
\begin{matrix}C_3F_7N\\&CF_2CCF\end{matrix}
$$

which minimizes the steric interaction between the two chlorine atoms. Photolysis of **1** or **2** at 3000 **A** in a quartz vessel gives

the perfluoroazaalkene in nearly quantitative yield:
\n
$$
C_3F_7N(Cl)CF_2CFXCI \xrightarrow{h\nu} C_3F_7N=CF_2
$$

It is interesting to note that more highly substituted azaalkenes result when 1 or 2 is reacted with $(C_6H_5)_3P^{10}$ or with CsCl

1 + (C₆H₅)₃P or CsCl

$$
\xrightarrow{CH_3CN}
$$
 C₂F₅CF=NCF₂CFCL₂ +
3 (77%)
(C₆H₅)₃PCIF (Cl₂ + CsF)

2 +
$$
(C_6H_5)_3P
$$
 or CsCl $\rightarrow C_2F_5CF=NCF_2CF_2Cl +$
4 (40%)
 $(C_6H_5)_3PCIF(Cl_2 + CsF)$

Although the reaction of 2 with $(C_6H_5)_3P$ gives 4, a second product which exhibits an infrared stretching band at 1703 cm^{-1} (assigned to $C=N$) was also formed but was not identified.

Insertion reactions of cyanogen chloride into the N-Cl bond of secondary chloroamines provide straightforward routes to

carbimides which are also useful azaalkene precursors
\n
$$
(CF_3)_2NCl + CICN \rightarrow (CF_3)_2NN=CCl_2^6
$$

\n $1 + CICN \rightarrow C_3F_7(N=CCl_2)CF_2CFCl_2$

Only a 10% yield of **5** is obtained when **1** is photolyzed with a 7-fold excess of ClCN, which is added in an attempt to reduce the formation of $C_3F_7N=CF_2$ and CCl_3F (90% of the products).

Chlorofluorination of carbimides with chlorine fluoride readily occurs at 25 °C. Photolysis produces polyfluoroazaalkenes and polyfluorotetrazanes.

$$
(CF3)2NN=CCl2 CIF12 h (CF3)2NN(Cl)CF2Cl h\nu\nor-CIF\n
$$
(CF3)2NN=CCIF + [(CF3)2NN(CF2Cl)]2
$$
$$

In the presence of CsF the azaalkenes are readily dimerized.
\n
$$
(CF_3)_2NN=CCl_2
$$
 or $(CF_3)_2NN=CCIF \rightarrow (CF_3)_2NN=CFN(CF_3)N(CF_3)_2$

Chen et	Chen et		
$RN = CF_2 + RI$	$\frac{AgF}{CH_3CN}$	$R_tN(R)CF_3$	
C_eH_3CN	$Y^{11,12}$	75	
CF_3	CH_3	$7^{11,12}$	75
CF_2F_5	CH_3	9	67
C_2F_5	C_2H_5	10	40
CF_3F_7	CH_3	11	60
$(CF_3)_2N$	CH_3	$7^{11,12}$	65
CF_3	C_6H_5	12^{13}	50
CF_3	$(CH_3)_3Si$	13^{14}	45
CF_3	CF_3S	14^{15}	40

Just as it is possible to take advantage of the polar nature of the nitrogen-carbon bond in an azaalkene to add chlorine fluoride, e.g., $C_3F_7N=CF_2 + CIF \rightarrow C_3F_7N(Cl)CF_3$ (6) (~100%), we now report the synthesis of a variety of tertiary amines via the reaction of silver salts formed from azaalkenes plus silver fluoride. When $R_f = C_2F_5$ or C_3F_7 in $R_fN=CF_2$, considerably longer reaction times were required than when $R_f = C F_3$.

Although the utilization of AgF with unsaturated compounds to form reactive nucleophiles has been employed many times before, this method is used for the first time to provide a relatively high-yield, straightforward route to bis(perfluoroalky1) alkyl(or aryl) tertiary amines. While the synthetic routes differ, several of these tertiary amines have been **in** the literature for more than 20 years. For example, the fluorination of $(CH₃)₂NC(O)H$ with $SF₄$ in the presence of KF produces $(CH₃)₂NCF₃$ (bp 20 °C).^{16,17} Surprisingly, $(CF_3)_2NCH_3$, which was produced initially by the reaction of $CF_3N=CF_2$ and $CH_3OSO+SbF_6^{-11}$ boils only slightly lower at 15 °C. Substitution of CH₃ by CH₃CH₂ in **8** raises the boiling point to 30 \degree C, which, when coupled with its other thermodynamic properties, places it in a competitive role to replace $CCl₃F$ in real world applications.

In place of AgF, CsF was found to work effectively for the synthesis of $(CF_3)_2NCH_3$, $(CF_3)_2NCH_2CH_3$, $(CF_3)_2NSi(CH_3)_2$, and $(CF_3)_2NSCF_3$, while the reactions do not proceed in the presence of KF or $CaF₂$ under analogous conditions.

This methodology can be employed equally successfully with a few more highly substituted azaalkenes, e.g.

$$
(CF3)2NN=CFN(CF3)N(CF3)2 + CH3I \xrightarrow{AgF}
$$

\n(CF₃)₂NN(CH₃)CF₂N(CF₃)N(CF₃)₂
\n**15** (55%)
\nSF₅N= C(Cl)C₂F₅¹⁶ + CH₃I \xrightarrow{AgF}
\nCH₃CN

$$
SF5N(CH3)CF2CF2CF3 + SF5N=CF(C2F5)
$$

16 (60%) minor

Under analogous conditions **bis[bis(trifluoromethyl)amino]** ethane, $(CF_3)_2NCH_2CH_2N(CF_3)_2$ (17) (60% yield; bp 110 °C), and tetrakis[bis(trifluoromethyl)amino]ethane, $[(CF_3)_2N]_2$ -CHCH[N(CF3)2]2 **(18),** were formed from **the** reactions **of** $CF₃N=CF₂$ with BrCH₂CH₂Br and Br₂CHCHBr₂, respectively.

Dimerization of $CF_3N=CF_2$ to $(CF_3)_2NCF=NCF_3$ occurs readily in the presence of CsF. However, when the latter is reacted with CH₃I/AgF/CH₃CN, only 7 is obtained. The product formed with $(CF_3)_2NCF_2N=CF_2^3$ is also 7. The formation of the single

- **(1 I) Henle, H.; Geisel, M.; Mews, R.** *J. Fluorine Chem.* **1984,** *26,* **133.**
- **(12) Haszeldine, R. N.; Tipping, A. E.; Valentine, R. H.** *J. Fluorine Chem.* **1982,** *21,* **335.**
- (13) Fawcett, F. S.; Sheppard, W. A. J. Am. Chem. Soc. 1965, 87, 4341.
Hart, T. W.; Haszeldine, R. N.; Tipping, A. E. J. Chem. Soc., Perkin *Trans. 1* **1980, 1544.**
- **(14) Ang, H. G.** *J. Chem. SOC. A* **1968, 2734.**
- (15) Sprenger, G. H.; Shreeve, J. M. J. Am. Chem. Soc. 1974, 96, 1770.
(16) Harden, R. J.; Smith, W. C. J. Am. Chem. Soc. 1961, 83, 3422.
(17) Dmowski, W.; Kamiński, M. J. Fluorine Chem. 1983, 23, 207.
-
-
- **(18) Thrasher,** J. S.; **Nielsen,** J. **B.** *J. Fluorine Chem.* **1990,** *48,* **407.**

product must arise from the following equilibria which exist among $A-C$:

$$
2CF_{3}N=CF_{2} \stackrel{F}{=} (CF_{3})_{2}NCF=NCF_{3} \stackrel{=}{F} (CF_{3})_{2}NCF_{2}N=CF_{2}
$$

(CF_{3})_{2}NCF_{2}N=CF_{2}

In these cases, only in the presence of strongly nucleophilic fluoride In these cases, only in the presence of strongly nucleophilic fluoride
ion (not AgF) is the $A \rightarrow B$ equilibrium shifted markedly to the
right, whereas $F(A \cap F)$ is sufficiently active to isomering G In these cases, only in the presence of strongly nucleophilic fillometric
ion (not AgF) is the A \rightarrow B equilibrium shifted markedly to the
right, whereas F- (AgF) is sufficiently active to isomerize C B and finally to A. Thus, the most stable compound is $CF₃N=CF₂$, which leads to the sole isolable product.

Further attempts to synthesize additional tertiary amines from $(CF_3)_2NC(NMe_2)$ =NCF₃,³ SF₅N=C(C₂F₅)NMe₂,¹⁹ and $SF_5N=CC(F_3)C_2F_5^{17}$ failed. Only the starting materials were recovered.

An interesting result was the formation of a new polyfluoroazaalkene from the reaction of $C_3F_7N=CF_2$ with CF_3CH_2I , viz.

$$
C_3F_7N=CF_2+CF_3CH_2I \underset{100^{\circ}C_16d}{\rightarrow} C_2F_5CF=NCH_2CF_3
$$

No trace of the expected product, $C_3F_7N(CH_2CF_3)CF_3$, was is

$$
C_{3}F_{7}N=CF_{2} + CF_{3}CH_{2}I \longrightarrow C_{2}F_{5}CF=NCH_{2}CF_{3}
$$
\n
$$
C_{3}F_{7}N=CF_{3} + CF_{3}CH_{2}I \longrightarrow C_{3}F_{7}N(CH_{2}CF_{3})CF_{3}
$$
\n
$$
C_{3}F_{7}N=CF_{3}CF_{3}
$$
\n
$$
C_{3}F_{7}N=CF_{3}CF_{2}
$$
\n
$$
C_{3}F_{7}F_{7}N=CF_{3}F_{7}N=CF_{3}CF_{2}
$$
\n
$$
C_{3}F_{3}F_{4}N=CF_{3}CF_{4}
$$
\n
$$
C_{3}F_{4}F_{5}N=CF_{3}F_{4}
$$
\n
$$
C_{3}F_{4}F_{5}N=CF_{3}F_{4}
$$
\n
$$
C_{3}F_{5}F_{6}F_{7}F_{8}
$$
\n
$$
C_{3}F_{7}F_{8}F_{9}F_{9}
$$
\n
$$
C_{3}F_{8}F_{9}F_{9}F_{1}
$$
\n
$$
C_{3}F_{9}F_{9}F_{9}
$$
\n
$$
C_{3}F_{9}F_{9}F_{9}
$$
\n
$$
C_{3}F_{9}F_{9}
$$
\n
$$
C_{3}F_{9}F_{9}
$$
\n
$$
C_{3}F_{9}F_{9}
$$
\n
$$
C_{3}F_{9}F_{9}
$$
\n
$$
C_{3}F_{9}
$$
\n
$$
C_{3
$$

In the trap-to-trap separation of the reaction mixture, **19** was found in a trap at -65 °C and CF_3I was identified in the trap at -196 °C. This type of reaction in which the carbon-fluorine bond of the α -CF₂ group in C₃F₇ is broken with concomitant double-bond shift **is** rare. Work in this area is continuing.

Experimental Section

Materials. The reagents $CF_3NC1_2, C_2F_5NC1_2, C_3F_7NC1_2, CF_3N=CF_2$, $(CF_3)_2NN=CF_2$, $(CF_3)_2NN=CFN(CF_3)N(CF_3)_2$, and $SF_5N=C(CI)$ - C_2F_5 were prepared according to literature methods.^{1,2,6,18,20} Other chemicals were purchased as indicated and used as received: chlorine fluoride (Atochem North America); ClCN (SolkatronicChemicals Inc.); $CF₃CN$, $C₂F₅CN$, $CF₂=CF₂$ and $CF₂=CFC1$ (PCR), $P(C₆H₅)₃$, CsCl; AgF, CH₃CN, C₆H₂CN, CH₃I, C₂H₅I, CH₂I₂, BrCH₂CH₂Br, Br₂- $CHCHBr₂$, and $CF₃CH₂I$ (Aldrich Chemical Co., Inc.).

General Procedures. A conventional vacuum system, which consisted of a Pyrex glass vacuum line equipped with Heise Bourdon tube and Teievac thermocouple gauges, was used to handle gases and volatile liquids. Standard **PVT** techniques were used to quantitate starting materials and products. Fractional condensation (trap-to-trap distillation) and/or gas chromatography (HP5710A) were used for purification. Infrared spectra were recorded **on** a Perkin-Elmer 17 10 infrared Fourier transform spectrometer with a 10-cm gas cell equipped with KBr windows. ¹H and I9F NMR spectra were obtained with a Bruker AC 200 Fourier transform NMR spectrometer using CDCl₃ as solvent. Mass spectra were obtained with a VG 7070HS mass spectrometer by using chemical ionization techniques. Elemental analyses were performed by Beller Mikroanalytisches Laboratorium, Göttingen, Germany, Photochemical reactions were conducted in a Rayonet ultraviolet reactor with 3000-A lamps.

Preparation of C₃F₇N(Cl)CF₂CFCl₂(1) and C₃F₇N(Cl)CF₂CF₂Cl(2). Into a 75-mL stainless steel cylinder fitted with a Whitey valve was condensed 10 mmol of $C_3F_7NC1_2$ and 12 mmol of olefin ($CF_2=CF_2$ or $CF_2=CFC1$) at -196 °C. After being warmed to room temperature, the cylinder was placed in a $65-70$ °C oven for $12-14$ h. The products were fractionated by trap-to-trap distillation.

Properties of C₃F₇N(CI)CF₂CFCI₂ (1). This compound was isolated in a trap cooled to -25 °C having passed through a trap cooled to -10 °C. It was obtained in \sim 75% yield as a colorless liquid. Spectral data were as follows. IR (gas): 1349 w, 1274 s, 1218 vs, 1207 s, 1163 m, 1135 m, 1104 m, 1054 w, 1010 w, 940 m, 772 w, 733 **s** cm-I. NMR **(CF3ACF2BCF2CNCF2DCFEC12):** I9F, 6 -81.64 (A, mult, 3), -123.26 (B, mult, 2). -89.96 (C + D, mult, 4), -70.46 (E, mult, 1). MS CI *[m/e* (species), intensity]: $316/318 (M⁺ – CIF + 1)$, $7.42/4.52$; $296/298/300$ $(M^+ - ClF_2)$, 21.31/12.03/2.34; 214 (C₄F₈N⁺), 24.07; 196/198 (C₃F₄- $Cl₂N⁺$, 4.30/1.95; 169 (C₃F₇⁺), 8.67; 151/153 (CF₂CFCl₂⁺), 8.18/ 5.03; 86/88 (CF₂Cl⁺ + 1), 100.0/100. Anal. Calcd for C₅F₁₀Cl₃N: C, 16.26; F, 51.5; C1, 28.7. Found: C, 16.21; F, 51.5; C1, 28.54.

Properties of C₃F₇N(Cl)CF₂CF₂Cl (2). This compound was found in the trap cooled to -25 °C, having passed through a trap at -10 °C. It was obtained in \sim 40% yield as a yellow liquid. Spectral data were as follows. 1R (gas): 1350 **m,** 1284 **s,** 1249 vs, 1207 vs, 1185 vs, 1137 **s,** 1109 s, 1000 **s,** 975 m, 902 w, 879 w, 803 m, 786 m, 738 **s** cm-I. NMR $(CF_3{}^ACF_2{}^BCF_2{}^CN(CI)CF_2{}^DCF_2{}^ECI):$ ¹⁹F, δ -81.6 (A, t), -124.0 (B, t), -92.8 (C, tt), -91.4 (D, tq), -68.4 (E, t); $J_{C-D} = 18.8$ Hz, $J_{B-E} = 7.5$ Hz, Jc-E = 7.5 Hz, *JA-D* = 9.4 Hz. MS CI *[m/e* (species), intensity]: 300/ 302 (M' - CIF + l), 49.2/18.6; 280/282 (M+ - CIF2), 100.0/43.0; 264 (M⁺ - Cl₂F), 39.1; 230/232 (M⁺ - CF₄Cl), 6.2/1.9, 214 (M⁺ - CF₃Cl₂), 29.2; 164 ($C_3F_6N^+$), 29.2; 135/137 ($C_2F_4Cl^+$), 55.9/18.4; 119 ($C_2F_5^+$), 56.0; 85/87 (CF₂Cl⁺), 47.3/14.6. Anal. Calcd for C₅F₁₁Cl₂N: F, 59.21; C1, 19.83; C, 17.00. Found: F, 57.1; CI, 19.25; C, 17.01.

Preparation of $C_2F_5CF=NCF_2CFCI_2$ **(3) and** $C_2F_5CF=NCF_2CF_2CI_2$ **(4).** By the stirring of 5 **mmol** of compound **1** or **2** with 10 **mmol** of $(C_6H_5)_3P$ at 25 °C for 4-6 h, compound 3 or 4 was formed. Also, when 5 mmol of compound 1 or 2 and 5 mmol of CsCl were stirred in CH₃CN for 5 d at 25 °C, compound 3 or 4 resulted.

Properties of C₂F₅CF=NCF₂CFCI₂ (3). This compound was found in the trap cooled to -78 °C, having passed through a trap at -40 °C. It was obtained in 77% yield as a colorless liquid. Spectral data were as follows. IR (gas): 1775 vs *(UC-N),* 1344 m, 1320 **s,** 1274 m, 1223 vs, 1180 vs, 1128 **s,** 1104 **s,** 1018 **s,** 915 **s,** 863 w, 824 w, 766 w, 687 w, 481 w cm⁻¹. NMR (CF₃^ACF₂^BCF^C=NCF₂^DCF^ECl₂): ¹⁹F, δ -83.3 (A, mult), -121.3 (B, d), -23.5 (C, mult), -92.7 (D, dd), -75.7 (E, mult); J_{B-C} = 13.2 Hz, *Jc-D* = 18.8 Hz,Jc-E = 9.2 Hz. MS CI *[m/e* (species), intensity]: 316/318/320 (M+ + **I),** 23.3/16.6/3.3; 296/298/300 (M+- F), 54.5/ 151/153/155 (C2F3C12+), 24.9/15.5/8.8; 101 (C2F4' + **I),** 53.2. Anal. Calcd for C₅F₉Cl₂N: C, 19.05; F, 54.29; Cl, 22.22. Found: C, 18.81; F, 52.2; CI, 22.80. 35.2/9.4; 262/264 (M⁺ – ClF + 1), 9.3/3.9; 214 (M⁺ – CFCl₂), 78.9;

Properties of $C_2F_5CF=NCF_2CF_2Cl$ **(4).** This compound was found with another azaalkene in the trap cooled to -85 °C, having passed through a trap at -70 °C. After purification by using a 4-ft. Kel-F on Haloport F column, it was obtained in \sim 40% yield as a yellow liquid. Spectral data were as follows. IR (gas): 1779 s ($v_{C=N}$), 1350 m, 1317 m, 1239 vs, 1209 vs, 1 190 **s,** 1130 **s,** 11 14 **s,** 1024 m, 966 m, 946 w, 481 w cm-I. NMR **(CF₃^ACF₂^BCF^C= NCF₂^DCF₂^ECI): ¹⁹F, δ-83.3 (A, mult), -121.3** (B, d), -22.8 (C, mult), -95.5 (D, dt), -73.6 (E, mult); $J_{C-D} = 18.8$ Hz, $J_{D-E} = 3.77$ Hz, $J_{B-C} = 13.2$ Hz. MS CI $[m/e$ (species), intensity]: $300/302$ (M⁺ + 1), 14.5/4.0; 280/282 (M⁺ - F), 36.5/10.5; 264 (M⁺ - Cl), **8.8;** 230 (M' - CFJ), 1.8; 214 (M' - CFzCI), 32.4; 135/137 $(C_2F_4Cl^+), 17.13/5.1; 119 (C_2F_5^+), 43.5; 100 (C_2F_4^+), 21.3; 85/87 (CF_2 Cl⁺$), 23.2/6.9.

Preparation and Characterization of $C_3F_7N(N=CCI_2)CF_2CFCI_2$ (5). A 5-mmol amount of **1** and 30-35 mmol of ClCN were condensed at -196 °C into a 2-L quartz vessel fitted with a Kontes Teflon stopcock. After the vessel warmed to 25 °C, it was exposed to UV radiation (3000 Å) for 6-7 h. The compound remained in the quartz vessel at 25° C under dynamic vacuum in \sim 10% yield, with the volatile compound $C_3F_7N=CF_2 (\sim 90\%)$ obtained as byproduct. Spectral data were as follows. IR (gas): 1651 vs (YC-N), 1572 **m,** 1505 **m,** 1476 m, 1409 w, 1343 m, 1278 **s,** 1235 **s,** 1203 **s,** 1127 **s,** 1039 **s,** 1018 **s,** 939 **s,** 908 **s,** 846 m, 825 m, 783 m, 738 m, 681 w cm-I. NMR **(CF3ACF2BCF2CN(N=CC12)CF2DCFEC12):** 19F, 6 -81.4 (A, mult), -123.7 (B, t), -95.6 (C, mult), -91.8 (D, t), -72.3 (E, q); $J_{A-E} = 7.3$ Hz, *JB-C* = 17.9 Hz, *Jc-D* = 10.2 Hz. MS CI *[m/e* (species), intensity]: 430 $(M^+), 0.7; 411/413 (M^+ - F), 2.0/1.3; 395/397 (M^+ - Cl), 2.6/2.0;$ $329/331$ (M⁺ - CFCl₂), 11.7/6.8; 296/298 (M⁺ - CCl₂FN), 2.2/1.6; 214 ($C_4F_8N^+$), 5.8; 169 ($CF_3CF_2CF_2^+$), 7.8; 135/137 (FCF_2CFCI^+), 9.8/2.8; 101/103 (CFCl₂⁺), 76.0/50.6.

Preparation and Characterization of C₃F₇N(CI)CF₃ (6). A 5-mmol amount of C₃F₇N=CF₂ and 5.5 mmol of CIF were condensed into a stainless steel vessel at -196 °C, warmed to 25 °C, and held for $10-12$ h. A colorless liquid in \sim 100% yield was found in a trap cooled to -60 °C, having passed through a trap at -40 °C. Spectral data were as follows. IR (gas): 1350 **s,** 1257 vs, 1132 vs, 1085 w, 1016 **s,** 1000 vs, 953 w, 873 m, 845 **s,** 755 **m,** 734 **s,** 716 **s,** 646 w, 538 w cm-I. NMR $(CF_3^ACF_2^BCF_2^CN(CI)CF_3^D)$: ¹⁹F, δ -81.7 (A, mult), -125.1 (B, mult),

⁽¹⁹⁾ Patel, N. To be published (University of Idaho).

⁽²⁰⁾ Krumm, B.: Kirchmeier, R. L.; Shreeve, J. M. To be published.

 -96.0 (C, mult), -60.1 (D, mult). MS CI [m/e (species), intensity]: 234 $(M^+ - CIF + 1)$, 100.0; 214 $(M^+ - CIF_2)$, 100.0; 164 $(M^+ - C_3F_6N)$, 69.5; 146 ($C_3F_5N^+$ + 1), 22.3; 114 ($C_2F_4N^+$), 100.0; 101 ($C_2F_4^+$ + 1), 51.6; 95 (C₂F₃N⁺), 29.6; 84 (CF₃N⁺ + 1), 39.6. Anal. Calcd for C₄F₁₀-ClN: **C,16.72;F,66.20;C1,12.20.** Found: C, 16.64;F,65.8;Cl, 12.48.

Reactions of Azaalkenes with CH₃I, C₂H₅I, or C₆H₅I. Preparation of $R_fN(R)CF_3$ ($R = CH_3$, C_2H_5 , C_6H_5). A 6-mmol amount of AgF and ~ 4 mL of C_6H_5CN were added to a 100-mL flask equipped with a Kontes Teflon stopcock. The flask was evacuated at -196 °C, and 5 mmol of azaalkene and 6 mmol of alkyl or aryl iodide were condensed into the flask, which was warmed to 25 $^{\circ}$ C and stirred in the dark for 3 d. The products were separated by trap-to-trap distillation.

Properties of $(CF_3)_2NCH_3$ **(7). This compound was found in 75%** yield in a trap at -110 °C trap, having passed through a trap at -78 °C. It was identified by comparing the infrared and NMR data obtained with the data reported in the literature.^{11,12}

Properties of $(CF_3)_2NC_2H_5$ **(8).** This compound was found in 70% yield in a trap at -115 °C, having passed through a trap at -78 °C. When CsF was used in place of AgF, slightly better yields were obtained. It was identified by comparing the infrared and NMR data obtained with the data reported in the literature.¹² Compound 8 boils at 30 °C $(\Delta H_r =$ 6.5 kcal/mol; $\Delta S = 21.5$ eu).

Properties of $C_2F_5N(CF_3)CH_3(9)$ **. This compound was found in the** trap cooled to -100 °C, having passed through a trap at -78 °C. The yield of the compound was \sim 67%. Spectral data were as follows. IR (gas): 2980 **w,** 2877 w, 1484 m, 1460 m, 1328 vs, 1229 vs, 1192 **s,** 1149 vs, 1094 **s,** 932 w, 886 **s,** 717 **s,** 660 w, 628 w cm-I. NMR (C, tq); ¹H, δ 2.8 (D, mult); J_{A-C} = 3.5 Hz, J_{C-D} = 1.8 Hz, J_{B-D} = 1.9 $Hz, J_{A-D} = 1.9 Hz, J_{B-C} = 13.2 Hz$. MS CI [*m*/e (species), intensity]: $(CF_3{}^A CF_2{}^B N (CF_3{}^C)CH_3{}^D)$: ¹⁹F, δ -84.5 (A, qq), -99.7 (B, qq), -57.8 216 (M⁺ – H), 6.5; 198 (M⁺ – F), 100; 148 (M⁺ – CF₃), 100; 128 (M⁺ $-CF_4H$), 10.5; 119 (C₂F₅⁺), 28.2; 110 (M⁺ – CF₅), 17.5; 101 (C₂F₄⁺) $+ 1$), 17.6; 96 (C₂F₃N⁺ + 1), 12.4. Anal. Calcd for C₄F₈H₃N: C, 22.12; N, 6.45; H, 1.38. Found: C, 21.99; N, 6.42; H, 1.43.

Properties of $C_2F_5N(CF_3)C_2H_5$ **(10). The compound was found in** 40% yield in the trap cooled to -100 °C, having passed through a trap at -78 °C. It is a colorless liquid. Spectral data were as follows. IR (gas): 2997 w, 1403 w, 1351 m, 1322 s, 1262 vs, 1223 vs, 1185 w, 1148 s, 1132 m, 1084 vs, 896 w cm⁻¹. NMR (CF₃ACF₂BN(CF₃C)CH₂D-CH₃E): ¹⁹F, δ -84.9 (A, q), -98.3 (B, qt), -54.5 (C, mult); ¹H, δ 3.28 $= 7.1$ Hz. MS CI [m/e (species), intensity]: 230 (M⁺ – H), 4.6; 216 (D, qt) , 1.23 (E, tq) ; $J_{A-E} = 4.7$ Hz, $J_{B-C} = 12.9$ Hz, $J_{B-D} = 2.1$ Hz, J_{D-E} $(M⁺ - CH₃), 100; 198 (M⁺ - CH₃F + 1), 7.1; 184 (M⁺ - C₂H₃F + 1),$ 100; 162 $(M^+ - CF_3)$, 45.5; 134 $(M^+ - C_2H_5 - CF_3 + 1)$, 12.5; 128 $(C_3F_4H_2N^+), 43.6; 119 (C_2F_5^+), 31.9; 114 (C_2F_4N^+), 15.5; 103$ $(NC_4F_2H_3^+), 100; 100 (C_2F_4^+), 100; 89 (NC_3F_2H^+), 59.0.$

Properties of $C_3F_7N(CF_3)CH_3(11)$ **. This compound (60% yield) was** found in a trap cooled to -78 °C, having passed through a trap at -60 ^oC. It is a colorless liquid. Spectral data were as follows. IR (gas): 2981 **w,1485m,1459m,1340vs,1278s,1219vs,** 1139vs,1099vs, 1029 m, 987 vs, 852 **s,** 758 m, 725 w, 535 w, 482 w cm-I. NMR (C, mult), -57.7 (D, tt); IH, *6* 2.87 (E, mult); *JA-C* = 9.8 Hz, **JB-D** = 5.6 Hz, $J_{C-D} = 15.0$ Hz. MS CI [m/e (species), intensity]: 268 ($M^+ + 1$), **(CF3ACF~BCFzCN(CF3D)CH~E):** I9F,6-81.9 (A, t),-127.4(B,q),-96.1 2.2; 248 (M⁺ – F), 100.0; 226 (M⁺ – H₃F₂), 4.5; 214 (M⁺ – CH₃F₂), 1.3; 198 (M⁺ - CF₃), 2.0; 178 (M⁺ - CF₄H), 1.0; 169 (C₃F₇⁺), 6.2; 160 $(C_4F_5H_3N^+),$ 4.6; 148 $(M^+-C_2F_5),$ 56.2; 131 $(C_3F_5^+),$ 0.5; 119 $(C_2F_5^+),$ 4.2; 114 ($C_2F_4N^+$), 3.5; 100 ($CF_2CF_2^+$), 3.0; 96 (CHNCF₃⁺), 3.1.

Properties of $(CF_3)_2NC_6H_5$ **(12). This product was isolated in 50%** yield in a trap at -78 °C, having passed through a trap at -40 °C. It was identified **by** comparison of infrared and NMR data with the spectra reported in the literature.)

Properties of $(CF_3)_2$ **NSi(CH₃)₃ (13) and** $(CF_3)_2$ **NSCF₃ (14).** Compounds of 13 and 14 were prepared by mixing (CH₃)₃SiCl and CF₃SCl, respectively, with CsF, $CF_3N=CF_2$, and CH₃CN. The products were separated by trap-to-trap distillation, and **13** and **14** were identified by comparing the infrared and NMR spectra obtained with the literature data.^{14,15}

Properties of $(CF_3)_2NN(CH_3)CF_2N(CF_3)N(CF_3)_2$ **(15). This com**pound was found in a trap held at -90 $^{\circ}$ C (\sim 55% yield), having passed a trap at -78 °C. Spectral data were as follows. IR (gas): 2980 m, 2960 w, 1848 m, 1726 w, 1658 w, 1348 m, 1289 **s,** 1240 **s,** 1213 **s,** 1180 vs, 11 18 vs, 1043 **s,** 981 m, 909 **s,** 848 m, &17 **s,** 796 m, 654 w, 524 w, 481 w cm-I. mult), -67.;8 (D, E, mult), -60.6 (C, mult); IH, *6* 3.01 (B, mult). MS CI $[m/e$ (species), intensity]: 466 (M⁺), 2.5; 447 (M⁺ – F), 9.8; 432 (M⁺ NMR [(CF₃)₂^ANN(CH₃)^BCF₂^CN(CF₃)^DN(CF₃)₂^E]: ¹⁹F, δ -72.0 (A, $-$ CH₃F), 5.6; 398 (M⁺ – CF₃ + 1), 15.6; 378 (M⁺ – CF₄), 4.8; 326 (M⁺ $-C_2F_6H_2$, 1.6; 314 (M⁺ – N(CF₃)₂), 2.0; 246 (C₄F₈N₃H₄⁺), 11.5; 230 $(C_3F_8N_3^+), 24.1; 198 (C_3F_7N_2H^+), 12.8; 178 (C_3F_6N_2^+), 1.1; 153 (C_2F_6-$ NH⁺), 41.1; 152 (C₂F₆N⁺), 48.9; 133 (C₂F₅N⁺), 2.5; 83 (CF₃N⁺), 31.2; 69 (CF3+), 100.

Properties of SFsN(CH3)CJH7 **(16).** Compound **16** was found in a trapat-78 °C (60% yield), having passed through a -35 °C trap. Spectral data wereas follows. IR (gas): 2967 m, 1541 w, 1515 m, 1481 w, 1341 m, 1235 vs, 1205 **s,** 1146 **s,** 1096 w, 1016 **s,** 980 **s,** 914 **s,** 868 m, 832 w, 790 w, 751 s, 700 m, 607 m cm⁻¹. NMR [SF₄AF^BN(CH₃)^CCF₂PCF₂E-CF3F]: 19F, *6* 69.1 (A, d), 76.9 (B, p), -91 (D, mult), -120 (E, mult), -81.7 (F, mult); $J_{SF-SF_4} = 145$ Hz; ¹H, δ 3.09 (C, m). MS CI [m/e (species), intensity]: 326 (M+ + l), 1.5; 325 (M+), 15.2; 272 (M+ - CH₃F₂), 1.0; 243 (M⁺ + 2 - C₂F₃H₃), 7.2; 225 (M⁺ - C₂F₄), 10.6; 211 $(M^+ + 1 - C_3F_4H_3)$, 3.0; 206 $(M^+ - C_2F_5)$, 17.7; 198 $(M^+ - SF_5)$, 1.0; 183 (M⁺ - CH₃ - SF₅), 1.5; 169 (C₃F₇⁺), 5.9; 160 (C₃F₄H₂NS⁺), 11.0; 154 (SF₅NC⁺ + 1), 2.5; 142 (SF₅N⁺ + 1), 2.9; 129 (C₃F₄NH₂⁺), 2.1; 127 (SF₅⁺), 45.3; 119 (C₂F₅⁺), 76.8; 114 (C₂F₄N⁺), 2.9; 100 (C₂F₄⁺), 15.5; 89 (SF₃⁺), 7.7; 79 (C₂F₂NH₃⁺), 3.7; 69 (CF₃⁺), 100. Anal. Calcd for C₄F₁₂H₃NS: C, 14.7; F, 70.2. Found: C, 13.9; F, 69.8.

Preparation of $(CF_3)_2NCH_2CH_2N(CF_3)_2$ **(17) and** $[(CF_3)_2N]CHCH$ **-**[N(CF3)2]2 **(18).** To a 500-mL round-bottomed flask equipped with a Teflon stopcock was added 7 mmol of silver fluoride. The flask was cooled to -196 °C and evacuated, and 6 mmol of acetonitrile was added. The mixture was stirred at 25 $^{\circ}$ C for 1 h, after which 6 mmol of **CF3N=CF2wasaddedandstirring** wascontinued for 3 h. Tothismixture was added 3 mmol of BrCH₂CH₂Br or 1.5 mmol of Br₂CHCHBr₂. After 12 h at 25 °C, the products were separated by low-temperature trapto-trap distillation.

Propertiesof (CF3)2NCH2CH2N(CF3)2 **(17).** Compound **17** was found in 60% yield in a trap at -70 °C, having passed through a trap at -30 ^oC. Spectral data were as follows. IR (gas) 2967 m, 2945 w, 1377 w, **1286w,1211s,1187s,1118s,1084vs,1029s,910s,846vs,817s,735** m, 603 m, 481 m cm-l. NMR **[(CF3)2ANCH2BCH2N(CF3)2]:** I9F, **6** -56.7 (A, **s);** lH, 6 3.43 (B, **s).** MS CI [m/e (species), intensity]: 332 $(M^+), 1.1; 264 (M^+ + 1 - CF_3), 1.0; 244 (M^+ - CF_4), 1.5; 223 (M^+ CF₅H₂$), 1.8; 203 (M⁺ - CF₆H₃), 2.0; 195 (M⁺ + 1 - C₂F₆), 1.9; 181 (M⁺ $+ 1 - N(CF_3)_2$, 2.5; 149 (C₅F₃N₂H₄⁺), 27.4; 109 (C₃F₃NH₂⁺), 10.4; 107 (C₃F₃N⁺), 13.2; 97 (CF₃NCH₂⁺), 15.0; 95 (CF₃NC⁺), 19.8; 83 (CF3N+), 23.5; 69 (CF+), 100. Compound **18** boils at 109.9 "C *(AHv* $= 10.0$ kcal/mol; $\Delta S = 26.3$ eu).

Properties of $[(CF_3)_2N]_2CHCH[N(CF_3)_2]_2$ (18). Compound 18 was isolated in low yield in a trap at -50 "C, having passed through **a** trap at -25 "C. Spectral data were as follows. IR (gas): 2969 m, 2941 m, 1408 w, 121 3 **s,** 11 80 **s,** 11 18 **s,** 1084 vs, 1043 **s,** 910 **s,** 846 vs, 8 17 **s,** 735 m, 723 w, 481 w cm⁻¹. NMR $[{(CF₃)₂^A N}₃^2CH^B]₂: ¹⁹F, δ -68.0 (A, s);$ ¹H, δ 5.65 (B, b). MS CI [m/e (species), intensity]: 526 (M⁺ - CF₃-HF-F), 0.4; 381 ($M^+ - (CF_3)_2N - C_2F_4H$), 1.0; 344 ($[(CF_3)_2N]_2$ -CHCHN⁺), 2.0; 334 (C₈F₁₁N₂H⁺), 3.9; 299 (C₅F₁₁N₂H₂⁺), 16.0; 266 $(C_6F_8N_3^+)$, 22.2; 264 $(C_7F_8N_2^+)$, 26.2; 219 $(C_5F_6N_3H_3^+)$, 1.6; 206 $(C_4F_6N_3H_2^+), 15.9; 204 (C_5F_6N_2H_2^+), 40.3; 185 (C_5F_5N_2H_2^+), 43.9;$ 153 (C₂F₆NH⁺), 37.8; 103 (C₃F₂N₂H⁺), 79.5; 101 (C₂F₄H⁺), 100; 69 $(CF₃⁺)$, 24.7.

Preparation and Properties of CF₃CF₂CF=NCH₂CF₃ (19). A 6-mmol amount of AgF and \sim 4 mL of C₆H₅CN were added to a 100-mL flask equipped with a Kontes Teflon stopcock. After evacuation of the flask at -196 °C, 5 mmol of $CF_3CF_2CF_2N=CF_2$ and 6 mmol of CF_3CH_2I were condensed into the flask. The mixture was warmed and stirred in the dark at 100 °C for 6 d. The mixture was separated by trap-to-trap distillation, and **19** was found in the trap cooled to -65 "C, having passed through a trap at -50 "C. Spectral data were as follows. IR (gas): 2989 w, 1811 vs (v_{C} =N), 1416 m, 1352 m, 1317 vs, 1280 vs, 1233 vs, 1190 vs, 1153 vs, 1128 m, 1053 vs, 977 m, 737 **s,** 665 w cm-l. NMR (C, mult), -74.3 (E, t); ¹H, δ 4.66 (D, q); $J_{A-B} = 1.8$ Hz, $J_{D-E} = 7.5$ Hz. MS CI $[m/e$ (species), intensity]: 247 (M⁺), 41.7; 227 (M⁺ – HF), 100; **(CF3ACF2BCFC=NCH2DCF3E):** I9F, 6-83.4 (A, t),-121.9 (B,q),-77.6 210 (M+ - 2F + l), 18.7; 191 (M" - 3F **t** l), 17.5; 179 (M+- CF3 + 1), 6.7; 165 (M⁺ – CF₃CH₂ + 1), 1.2; 147 (M⁺ – CF₃ – CF), 26.1; 127 (M⁺ – CF₃ – CF₂ – H), 37.0; 119 (C₂F₅⁺), 98.1; 100 (CF₃CF⁺), 8.0; 83 $(CF₃CH₂⁺), 100.$

Acknowledgment. We are grateful for the support of the National Science Foundation (Grant **CHE-9003509),** the Air ForceOfficeof Scientific Research (Grant **91-0189),** and Daikin Industries, Ltd.